Compatibility of the Active Inductance Double Resonance Quartz Oscillator with Q-MEMS Temperature Sensor
نویسندگان
چکیده
Low-frequency double-resonance quartz crystal oscillator circuit was developed with active inductance aiming the quick start-up in the intermittent operation on the sensor circuit and DC isolation using a Q-MEMS sensing crystal HTS-206. Allan standard deviation indicated 5 × 10−12, showing short range stability of the sensor circuit sufficient for the ubiquitous environmental sensor network.
منابع مشابه
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the qua...
متن کاملNew Quartz Oscillator Switching Method for Nano-Henry Range Inductance Measurements
This article introduces a new method for nano-Henry inductance measurements at the frequency of 4.999 MHz with a single quartz crystal oscillating in the switching oscillating circuit. The real novelty of this method, however, lies in a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 0 °C and 50 °C through a switching metho...
متن کاملDevelopment of silicon and quartz based MEMS high precision accelerometers
Conventional electro-mechanical inertial sensors are being replaced by MEMS versions which are miniature in size, light weight, cost effective, more reliable and sensitive, low power consuming and VLSI compatible. Although silicon is the most widely used material for MEMS, quartz has some advantage for realizing inertial sensors due to its piezoelectric property. The R&D activities undertaken i...
متن کاملNoise Measurement Setup for Quartz Crystal Microbalance
Quartz crystal microbalance (QCM) is a high sensitive chemical sensor which has found widespread spectrum of applications. There are several mechanisms that are related to fluctuation phenomena. Since the aim of our research is oriented to study the sensitivity and influence of different kind of noises on sensor resolution, we modified an existing method to measure the small frequency fluctuati...
متن کاملAchieving Long-term Bias Stability in High-q Inertial Mems by Temperature Self-sensing with a 0.5 Millicelcius Precision
We present long-term bias drift compensation in high-quality (Q) factor MEMS gyroscopes using real-time temperature selfsensing. The approach takes advantage of linear temperature dependence of the drive-mode resonant frequency for selfcompensation of temperature-induced sense-mode drifts. The approach was validated by a vacuum packaged silicon quadruple mass gyroscope, with signal-to-noise rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015